

Wear Rate Characteristics of Basalt-Based Composites as Material for Brake Pad

Gai Peter Friday¹, Adisa, Ademola Bello², Aje Tokan², Bawa, Mohammed A²

1. UAC FOODS NIGERIA LIMITED, KM 16 IKORODU ROAD OJOTA LAGOS NIGERIA 2. DEPARTMENT OF MECHANICAL/PRODUCTION ENGINEERING, ABUBAKAR TAFAWA BALEWA UNIVERSITY BAUCHI NIGERIA.

Submitted: 30-09-2021 Revised: 05-10-2021 Accepted: 08-10-2021

ABSTRACT

The production of the basalt-based composite material was carried out using compression moulding. The selected materials basalt rock, bronze chips, cast-iron chips, glass fibre and phenolic resin were crushed into powder and sieved with a sieve size of 150crons. An optimization model based on the rule of mixture was developed to obtained the volume fractions of the constituent materials and a factorial Design of three levels and three factors was applied to obtained different sets of manufacturing parameters for the production of the samples using MINITAB 18 software. Twentyseven samples with dimension of 20mm diameter and 8mm height were produced based on the formulation obtained from the optimization model and factorial design, this samples were subjected to tests. The test result shown that the basalt-based wear rate ranges from 9.0X10⁻⁵ to 1.52x10⁻⁴g/m and by volume is from 4.04×10^{-12} to 7.97×10^{-12} ¹²m³/Nm. The density of the composites ranges 2382.76 2781.33kg/m³. from to The Thermogravimetric Analysis (TGA) result shown that the basalt-based composites is thermally stable up to a temperature of 530°C before thermal degradation started setting in and Differential Thermal Analysis (DTA) result shown that the highest mass degradation occurred at a temperature of 600[°]C.

Keywords: Wear, Rate, Characteristics, Basalt, Composite, Brake, Pad.

I. INTRODUCTION

In automotive brake system is the vital mechanismwhich play a critical role in the safety of automotive, imagine a vehicle or motor circle without a brake system danger can only be imagined. Brake pad is an essential and critical component of the brake system, in each wheel there are two brake pads with their friction surface facing the rotating disc of the wheel. When the brake is applied fluid from brake master cylinder under pressure pushes the pistons in the wheel brake pot outwards, this in turn forces the brake pad friction surface against the rotating disc and retard the speed of the moving vehicle until the vehicle come to rest.

Basically, the brake system converts the kinetic energy of the moving car into heat energy and dissipate the heat at the wheels. This has made a brake pad to be a complex component which cannot be made from a single material; hence brake pad is a composites material made from two or more materials in macroscopic scale.

These constituent materials combine in macroscopic to form the composite of brake pad play different roles in influencing the properties of brake pad no matter how small the quantity of the material maybe it will still influence the properties of the composite material.

Other factors that influence the properties of composite material are the manufacturing parameters (Taiwo et al., 2019).

Wear as a property of brake pad define the life span of brake because the more the material during brake application the less the life span and vice versa. Other factors that affect wear are the nature of road and driver's behaviour.

Therefore, it is important that the wear rate is low so that the brake pad last longer in service, however, there should be a balance so that it become too hard that brake disc get wear off.

Basalt originates from volcanic magma and flood volcanoes, a very hot fluid or semifluid material under the earth's crust, solidified in the open air. Basalt is a common term used for a

variety of volcanic rocks, which are gray, dark in colour, formed from the molten lava after solidification (Artemenko and Kadykova, 2008)

Basalt is well known as rock found in virtually every country around the world. Its main use is as a crushed rock used in construction, industrial and highway engineering. However, it is not commonly known that basalt can be used in manufacturing and made into fine, superfine and ultra-fine fibres. Basalt rock is available in Plateau State and in large quantity.

A typical photograph of basalt rock is shown in plate 1 and the chemical composition as determined at Nigeria Institute Mining and Geoscience Tudun Jos Plateau Nigeria is shown in table 1.

Plate 1: Basalt rock in Bachit, Riyom LGA Plateau State Nigeria.

Table 1: Chemical Composition Basalt Rock								
Chemical Composition of	%							
Basalt								
SiO ₂	52.8							
Al ₂ O ₃	17.5							
Fe ₂ O ₃	10.3							
TiO ₂	1.38							
CaO	8.59							
MgO	4.63							
Na ₂ O	3.34							
K ₂ O	1.46							
LOI	8.52							

Basalt Rock fibres have no toxic reaction with air or water, are non-combustible and explosion proof. When in contact with other chemicals they produce no chemical reactions that may damage health or the environment. It has good hardness and thermal properties, can have various application as construction materials. Basalt is a major replacement to the asbestos, which poses health hazards by damaging respiratory systems. Basalt base composites can replace steel (1 kg of basalt reinforces equals 9.6 kg of steel) as light weight concrete can be get from basalt fiber. (Kunal, 2012,http://basaltfm.com/eng/index/html; dt 12/10/2010.).

As it is made of basalt rock is cheap and has several excellent properties (good mechanical strength, excellent sound and thermal insulator, non-flammable, biologically stable, etc. (Saravanan, 2006).

Nicholson G. (1995), avers that volume percent is the correct unit of measure for friction material composition. While the exact compositions of commercial friction materials are almost never published in the open literature, the constituent of the brake pad material are normally

made known. One of the most used constituents over the years is asbestos.

Nicholson G. (1995), the positive attribute of asbestos is that asbestos is thermally stable up to 500^{0} C above which it produces silicates, asbestos helps regenerate the friction surface during use, silicates produced by asbestos are harder and more abrasive than asbestos, asbestos insulates thermally, it processes well, it is strong yet flexible, and is processed as available at a reasonable cost.

Piyush et al., (2016), in their study for effective brake performance it was concluded that the exploit in brake is a function of the wear mechanism and friction properties of contacting materials

Madhusudhan and Kumar (2017), analyzed the wear behaviour of the SiC reinforced epoxy polymer composites using Taguchi methods and the result showed that load predominantly influencing the wear characteristics beside material factor.

Liew and Nirmal (2013) States that despite the fast progress of manufacturing technologies, wear has always been a great challenge for brake pad materials. The generated heat during friction process under diverse conditions which results to wear of materials.

Kahraman and Sugozu, (2019), investigated NOA brake friction materials using Taguchi and Response Surface Methodology and stated that the percentage contribution for braking pressure is 99.28%.

Yusubov (2021), stated that the changes in the microstructure due to increased temperature causes the generation of surface cracks and damage. Thus, formation of micro-cracks ultimately contributes to increased wear rate. When applied load increases the contact pressure between pin and disc surface temperature increases and because of frictional temperature rise material removal also begins to increase.

Xingming et al (2016), in their review stated that worn surface usually characterized by material surface deformation, removal and friction layer formation. This results to intensive wear and changes on contact surface morphology can reduce friction coefficient. In the nineteenth century asbestos was used as the best material for brake pad because of its heat resistant and good mechanical properties asbestos has used as major constituent for friction materials, nonetheless, due environmental and health concerns, the use of asbestos has banned in many countries.

Eriksson and Jacobson (2000), suggested that contact plateaus are formed mainly by phenolic

resin binder, which have been compacted during friction. If the sliding continues, the debris is reduced in size by fragmentation and worn debris particles begin to participate in the formation a of secondary plateaus or leave the friction surface.

(Krishnan et al. 2020), Frictional and wear resistances are the important parameters of the brake pad for better operation.

Cueva et al. (2003), Investigated the wear resistance of three different kinds of grey cast iron (grey iron grade 250, high carbon grey iron and titanium alloyed grey iron) used for the brake rotors and equated them with the data obtained with a compact graphite iron (CGI). Friction coefficients for brake material pairs vary from 0.07 to 0.7.

Anderson (1987), but generally most automobiles work in a smaller range. Typical friction coefficient values vary from approximately 0.3 to 0.6

(Xiao et al., (2016), stated that disc brakes are mostly used these days in the vehicles because of its faster heat dissipation characteristics. Braking pads are the backing sheets of steel, having friction content which is attached to the surface facing the rotor of the disk brake. Brake pads convert the kinetic energy of car through friction into thermal energy.

Hatam and Khalkhali (2018), stated that friction causes the release of energy with material wearing out which led to heating of brake parts and releases wear particles. Therefore, wear of brake pads results to the decrease in performance of the brakes which generates the need to replacement of brake pads.

Shravan and Konkala (2020), Studied the wear behaviour of three composite materials with the objective of getting a substitute for asbestos, these materials are Asbestos, Asbestos free and Cl3003 material. It was observed that the wear rate of all materials depends on the applied load with Cl3003 composite having the least wear rate followed by asbestos and asbestos-free has the highest. They concluded that Cl3003 is the best substitute to asbestos.

II. MATERIALS AND METHODS

The materials were carefully selected to give the desire service requirement of the composite material. These materials are basalt rock obtained from Bachit District in Riyom Local Government Area of Plateau State, glass fibre,bronze and cast-iron chips gotten as a waste from machine shop.Table 2 shows the functions of the selected materials in the composite.

S/N	Material	Function
1	Basalt powder	Filler & friction dust
2	Bronze chips	Improve thermal conductivity
3	Cast iron chip	Service as lubricate because of graphite
4	Fibre glass	Improve mechanical strength
5	Phenolic resin	Binder (matrix)

Table 2:	Materials	Selected	and	Their	Functions
I GOIC II	THE COLOURS	Derected			r anenomo

Materials Preparation

In order to have homogeneous mixture the materials were grinded to fine particle and 150micro was used in sieving the materials.

Grinding material to a finer powder enables it to be homogeneously mixed and when it is properly bonded the material behaveisotropically. Photographs of selected materials plate 1.

A linear optimization mo

Phenolic resin

Plate 1: Photographs of Selected Materials

Methods

Optimization model was developed based on the rule of mixture and the following assumptions were made:

- 1. There is a perfect binder between the particulates
- 2. The void content is less than 1%
- 3. The particulates are equidistance hence the material is isotropy (Matthew and Rawlings, 2005).
- Thus, the model is:

$$\max f(\mu) = \sum_{j=1}^{J} c_j v_j$$

Subject to:

$$\sum_{j=1}^{5} a_{ij} v_j \ge b_i \forall_i \ 1 \dots 5$$

This is express as:

Maximize $f(\mu) = \mu_{ba}v_{ba} + \mu_{gf}v_{gf} + \mu_{br}v_{br} + \mu_{ci}v_{ci} + \mu_{p}v_{p}...$ objective function

maximize coefficient of friction

The coefficients of the volume fractions as obtained from the selected materials were substituted in the equations and the equation below was formed

 $\begin{array}{l} Maximize \; f(\nu) = 0.7\nu_B + 0.5\nu_g + 0.22\nu_b + 0.4\nu_c + 0.15\nu_p\\ Subject \; to:\\ 226\nu_B + \; 1080\nu_g + \; 315\nu_b + 340\nu_c + \; 45\nu_p \; \geq \; 110\\ 66\nu_B + \; 1722\nu_g + \; 303\nu_b + \; 570\nu_c \; + \; 48\nu_p \geq \; 6\\ 74\nu_B + \; 74\nu_g + \; 65\nu_b + \; 65\nu_c + \; 48\nu_p \; \geq \; 65\\ 1.5\nu_B + \; 0.005\nu_g + \; 63\nu_b + \; 46\nu_c \; + \; 0.25\nu_p \; \geq \; 20\\ 78\nu_B + \; 73\nu_g + \; 100\nu_b + \; 180\nu_c \; + \; 3.8\nu_p \; \geq \; 76\\ \nu_{ba} + \nu_{gf} + \nu_{br} + \nu_{ci} \; + \nu_p \leq \; =1\\ \nu_{ba}, \nu_{gf}, \nu_{br}, \nu_{ci}, \nu_p \geq \; 0.12. \end{array}$

After developing the optimization model, an excel solver optimization tool was used to obtain the optimum composition of the selected constituents' materials that will gives the optimum desire properties of brake pad. The compositions in volume fractions are basalt 38%, glass fibre 12%, bronze chips 12%, cast iron chips 26% and phenolic resin 12%.

The result of the optimization obtained from the excel solver is shown in tables 3.

SOLUTION OF OPTIMIZATION								
Variables	vba	vgf	vbr	vci	υp			
Coefficients	0.7	0.5	0.22	0.4	0.158			
Solution (v)	0.38278831	0.12	0.12	0.257212	0.12			
max(fµ)	0.476196							

Table 3: Result of optimization as shown on the excel sheet

Constraint 1	266	1080	315	570	45	>=	110
Constraint 2	60	1722	303	180	48	>=	6
Constraint 3	74	74	65	65	48	>=	65
Constraint 4	1.5	0.034	63	46	0.25	>=	20
Constraint 5	78	73	100	180	3.8	>=	76
Constraint 6	0.38278831	0.12	0.12	0.257212	0.12	<=	1
	LHS	RHS					
Constraint 1	421.232352	110					
Constraint 2	318.025402	6					
Constraint 3	67.4850948	65					
Constraint 4	20	20					
Constraint 5	97.3715919	76					
Constraint 6	1	1					

Optimization of Manufacturing Parameters Using Design of Experiment.

Apart from the volume fraction influence on the properties of brake pad, manufacturing parameters also have significant control on the properties of brake pad.

It is on this premise, the work looked at the under listed manufacturing parameters which have influence on the properties of brake pad, these parameters are:

- 1. Moulding pressure.
- 2. Heat treatment temperature.
- 3. Heat treatment time.

Design of Experiment (DOE), was used to generate different set of manufacturing parameters. Full factorial design was run on MINITAB 18 software which generates these set of manufacturing parameters.

These sets of different conditions generated as shown in table 2 were used to produced twenty-seven samples.

These three manufacturing parameters are (moulding pressure, heat treatment temperature and heat treatment time) which are the factors and have minimum, medium, and high levels.

In this case the factorial design will take the form $(L)^{N}$.

Where L = level and N = factors

For this design N represents the manufacturing parameters which are three (3)

Therefore, the number of runs = 3x3x3 = 27

Kim and Jang (2003) used the Taguchi's method to optimize the manufacturing parameters of brake pad and it was found that the best parameters are moulding pressure 27MPa, heat treatment temperature $200^{\circ}C$ and heat treatment time six hours.

Based on this the research assumed the following levels in table 4 for the production of the brake pad.

Table 4: Manufacturing parameters level									
S/N	Level	Moulding Pressure	Heat Treatment	Heat Treatment					
		(MPa)	Temperature (⁰ C)	time (mins)					
1	low	24	180	5					
2	Medium	27	200	10					
3	High	30	220	15					

These low, medium and high levels are input in the DOE design which uses the Minitab software to give the factorial design as shown in tabl5

StdOrder	RunOrder	PtType	Blocks	Мр	Cte	Cti
8	1	1	1	24	220	10
6	2	1	1	24	200	15
25	3	1	1	30	220	5
7	4	1	1	24	220	5
1	5	1	1	24	180	5
11	6	1	1	27	180	10
24	7	1	1	30	200	15
12	8	1	1	27	180	15
16	9	1	1	27	220	5
4	10	1	1	24	200	5
26	11	1	1	30	220	10
20	12	1	1	30	180	10
21	13	1	1	30	180	15
15	14	1	1	27	200	15
27	15	1	1	30	220	15
3	16	1	1	24	180	15
2	17	1	1	24	180	10
9	18	1	1	24	220	15
13	19	1	1	27	200	5
10	20	1	1	27	180	5
22	21	1	1	30	200	5
23	22	1	1	30	200	10
19	23	1	1	30	180	5
5	24	1	1	24	200	10
17	25	1	1	27	220	10
18	26	1	1	27	220	15
14	27	1	1	27	200	10

Table 5: Factorial Design Manufacturing Parameters Using Design of Experiment Minitab 18

of Samples

A cylindrical mould of dimensions diameter 20mm and 8mm height was constructed for the production of the samples. The mould was properly cleaned and constitutes materials that form the samples were weighed/ measured based on the volume fraction of each constituent as obtained from the optimization model. The mixture of these materials was properly mixed using a two armstirrer at a speed of 250rev/min for 20 minutes to form homogeneous mixture before pouring the mixture into the mould after the mould was waxed

e, this is to enable easy removal of the samples from the mould.

The mixture poured into the mould is compressed at different pressure of 24MPa, 27MPa and 30MPa using hydraulic press.

After compressing the mixture, the samples were ejected from the mould and cured in an oven at different curing temperatures and curing time based on the design parameters obtained from the Design of Experiment (DoE) as shown in DoE table 5. Some samples produced are shown in plate

Plate 2.

Wear

Twenty-seven samples were produced and subjected to wear test using tribometer and ran at a velocity of 10cm/s under a load of 8N for a sliding distance of 50m. Before running the test on the tribometer the initial weight (m_1) of the samples was recorded in (g) and after running test the final weight (m_2) of the samples were recorded using an electronic digital weigh balance M311L.

The samples are shown in plate 2.

Weight lost = Initial weight - Final weight = m_1 - m_2 .

Wear rate = $\frac{\Delta W}{\text{Sliding distance}}$

Where: ΔW weight loss

Volume wear = $\frac{\text{Loss Volume}}{\text{Force x Sliding Distance}}$

The result obtained is shown in table 6.

Density of Samples.

Density expressed the mass of body per volume, in determining the density of the basalt brake pad portion of friction part of the brake pad was cut off and the weight weighed on an electronic digital weigh balance M311L the weight was recorded. Applying the Archimedes principle, the was piece cut and dropped in volume measuring cylinder containing water initially at 58.00ml, when the piece was dropped into the volume measuring cylinder the volume of water rises to 65.5ml. It therefore means that the volume of the piece is 7.5ml. These records are tabulated in table 6. Three samples were taken since most properties of the basalt-based composite are influenced by mould pressure, for this reason high, medium and low moulding pressure samples were picked and their density determined. These pressures are 30, 27 and 24MPa.

Density (ρ) = $\frac{Mass \text{ of sample}}{Volume \text{ of sample}}$

Table 6: Experimental Density of Basalt Brake Pad at different Manufacturing Parameters									
sample	weight sample(g)	of	volume water(ml)	of	volume of water + sample (ml)	volume sample (ml)	of	Density (kg/m ³)	
15	20.86		58.00		65.50	7.50		2,781.33	
18	20.74		58.00		66.00	8.00		2,592.50	
26	20.73		58.00		66.60	8.70		2,382.76	

Sample	Moulding pressure (MPa)	Curing temperature (⁰ C)	Curing time (min)	weight loss (g)	Volume loss (m ³)	Volume loss (m ³ /Nm)	Wear Rate g/m
1	24	220	10	0.0075	3.15E-09	7.87E-12	0.00015
2	24	200	15	0.0074	3.11E-09	7.76E-12	0.000148
3	30	220	5	0.0045	1.62E-09	4.04E-12	0.00009
4	24	220	5	0.0075	3.15E-09	7.87E-12	0.00015

DOI: 10.35629/5252-0310211223 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 218

5	24	180	5	0.0075	3.15E-09	7.87E-12	0.00015
6	27	180	10	0.0056	2.16E-09	5.40E-12	0.000112
7	30	200	15	0.0045	1.62E-09	4.04E-12	0.00009
8	27	180	15	0.0057	2.20E-09	5.50E-12	0.000114
9	27	220	5	0.0057	2.20E-09	5.50E-12	0.000114
10	24	200	5	0.0076	3.19E-09	7.97E-12	0.000152
11	30	220	10	0.0046	1.65E-09	4.13E-12	0.000092
12	30	180	10	0.0045	1.62E-09	4.04E-12	0.00009
13	30	180	15	0.0047	1.69E-09	4.22E-12	0.000094
14	27	200	15	0.0054	2.08E-09	5.21E-12	0.000108
15	30	220	15	0.0045	1.62E-09	4.04E-12	0.00009
16	24	180	15	0.0075	3.15E-09	7.87E-12	0.00015
17	24	180	10	0.0076	3.19E-09	7.97E-12	0.000152
18	24	220	15	0.0074	3.11E-09	7.76E-12	0.000148
19	27	200	5	0.0055	2.12E-09	5.30E-12	0.00011
20	27	180	5	0.0056	2.16E-09	5.40E-12	0.000112
21	30	200	5	0.0045	1.62E-09	4.04E-12	0.00009
22	30	200	10	0.0046	1.65E-09	4.13E-12	0.000092
23	30	180	5	0.0047	1.69E-09	4.22E-12	0.000094
24	24	200	10	0.0076	3.19E-09	7.97E-12	0.000152
25	27	220	10	0.0055	2.12E-09	5.30E-12	0.00011
26	27	220	15	0.0054	2.08E-09	5.21E-12	0.000108
27	27	200	10	0.0055	2.12E-09	5.30E-12	0.00011

Fig.2. Wear rate of Basalt-based Composite

Fig.3. volume loss of Basalt-based Composite

Thermogravimetric Analysis (TGA)

The thermal analysis was conducted to know the thermal stability of the basalt brake pad, the TGA was conducted in Federal University Minna using PerkinElmer TGA 4000. The sample of the basalt-based composite with weight14.933 grams was placed on a pan inside the furnace of the TGA analyzer which is supported by a stem connected to a balance which weigh the material as heating is progressing. The heating temperature was set from 30° C to 900° C at 10° C/min. in a nitrogen atmosphere with a purge rate of 20ml/min.

this was done so that the sample only reacts to temperature.

The change in mass of the sample over temperature was recorded and displayed on the screen.

III. DISCUSSION OF RESULT

The wear rate indicates the amount of material removed under application of load over a sliding surface of the material. The result in table 7shown that increasing the moulding pressure decreases the wear rate because the higher the moulding pressure the more materials particles are highly packed and the bonding of the material

become better and wear rate is less. The wear rate at 30MPa ranges between $9.0x10^{-5}$ g/m and $9.4x10^{-5}$ g/m this value is slightly higher than that and ceramics matrix brake pad which is $1.9x10^{-6}$ g/m (Stephen, et al., 2020). However, the wear rate of the basalt-based composites can be improved on if the particle sizes are further reduced. (Amaren et al., 2013)

Curing temperature has less influence on the wear rate of the basalt-based composite samples while curing time has insignificant influence.

The regression equation expressed the relationship of the influential manufacturing parameters. It is obvious from the expression that only moulding pressure and curing time has influence on the wear characteristics of the basaltbased composite and the is no interaction between the manufacturing parameters. The Pareto chart and Factorial plot as obtained from the Minitab 18 software showed that the curing time does not have influence on the wear rate, curing temperature has little influence while moulding has the highest influence.

The manufacturing parameters of 30mPa moulding pressure gives a better weight loss ranging from 0.0045- 0.0047g followed by 27MPa moulding and the 24MPa gives more weight loss as shown in figure 1. The same pattern is shown in figures 2 and 3 for wear rate and volume loss respectively.

Regression Equation

The regression equation of the wear rate as expressed below shows that the only moulding pressure and curing temperature has influence on the wear rate.

$$W1 = 0.005874 + 0.001637 \text{ Mp}_{24} - 0.000330 \text{ Mp}_{27} - 0.001307 \text{ Mp}_{30} + 0.000059 \text{ Cte}_{180} - 0.000030 \text{ Cte}_{200} - 0.000030 \text{ Cte}_{220}$$

Fig.4 Pareto chart of wear rate

Fig. 5 Factorial plot of Wear rate

Density

It is observed that the density of the basalt-based composite increased with increased in moulding pressure. The reason being that as the moulding pressure increased the particles of the constituent materials are packed more closely thereby reducing the volume of the composite by eliminating the pores in between the particles but the mass remained unchanged.

Since density is a function of mass divided by volume and mass remained unchanged while the volume of the composite decreases, the density increases.

This finding confirmed the work of (Taiwo. et al., 2019) on the effect of moulding pressure on brake lining produced from industrial waste. The curing

temperature and time does not have much influence on the density.

TGA/DTA

In figure 6. the TGA curve shows three steps of weight loss; the first is from 30^{0} C to 300^{0} C which is weight lost as a result of moisture, from 300^{0} C to 530^{0} C is as a result of further removal of moisture and volatile materials and from 530^{0} C to 828^{0} C as a result of pyrolysis.From the graph it is obvious the basalt-based composite is thermally stable up to temperature above 500^{0} C which meets the positive attribute of asbestos (Nicholas G., 1995).

The Differential Thermal Analysis (DTA) curve blue colour shows that the highest mass decomposition of the sample occurs at 600° C.

IV. CONCLUSION

The wear characteristics of basalt-based composite exhibited some level of minimal wear which can be accepted as a material for brake pad and as a substitute for ceramics brake pad. The thermal stability is very good which explain the possibility of maintaining good friction of friction at high temperature.

It is recommended that further research on the reduction of particle size will reduce wear rate of this material and make it a better candidate material for brake pad.

REFERENCES

- C.V. Piyush, C. Rodica, B. Andrea, A. Pranesh, S. Giovanni, G. Stefano, (2016) Role of the Friction Layer in the High-Temperature Pin-On-Disc Study of a Brake Material, Wear, vol. 346-347 pp. 56-65, 2016, doi: 10.1016/j.wear.2015.11.004
- [2]. T. Madhusudhan, M.S. Kumar, (2017), Experimental Study on Wear Behaviour of SiC Filled Hybrid Composites Using Taguchi Method, International Journal of Mechanical Engineering and Technology, vol. 8, iss. 2, pp. 271–277, 2017.
- [3]. K.W. Liew, U. Nirmal, (2013), Frictional Performance Evaluation of Newly Designed Brake Pad Materials, Materials & Design, vol. 48, pp. 25–33, 2013, doi: 10.1016/j.matdes.2012.07.055.
- [4]. F. Kahraman, B. Sugözü, (2019), An Integrated Approach Based on the Taguchi Method and Response Surface Methodology to Optimize Parameter Design of Asbestos-Free Brake Pad Material, Turkish Journal of Engineering, vol. 3, no. 3, pp. 127-132, 2019, doi: 10.31127/tuje.479458
- [5]. Yusubov F.F (2021) Wear Studies on Phenolic Brake Pads Using Taguchi Technique. Tribology in Industry (2021). DOI:10.24874/ti.1024.12.20.03.
- [6]. X. Xingming, Y. Yan, B. Jiusheng, L. Lijian, F. Xuejun, (2016), Review on the Friction and Wear of Brake Materials, Advances in Mechanical Engineering, vol. 8, no. 5, pp. 1-10, 2016, doi: 10.1177/16878140 16647300
- [7]. M. Eriksson, S. Jacobson, (2000), Tribological Surfaces of Organic Brake Pads, Tribology International, vol. 33, iss. 12, pp. 817–827, 2000, doi: 10.1016/S0301-679X (00)00127-4.
- [8]. Krishnan, G. S., L. G. Babu, R. Pradhan, and S. Kumar. (2020), Study on Tribological Properties of Palm Kernel Fiber for Brake

Pad Applications. Material Research Express 7: 1–7. doi:10.1088/2053-1591/ab5af5.

- [9]. Cueva, G., A. Sinatora, W. L. Guesser, and A. P. Tschiptschin. (2003). Wear Resistance of Cast Irons Used in Brake Disc Rotors. Wear 255: 1256–1260. doi:10.1016/S0043-1648(03)00146-7.
- [10]. Anderson, A. E. (1987) Brake System Performance-effect of Fiber Types and Concentrations. In Proceedings of Fibers in Linings Symposium's,2–57. Montreal, Canada: The Asbestos Institute.
- [11]. Hatam, A., and A. Khalkhali. (2018), Simulation and Sensitivity Analysis of Wear on the Automotive Brake Pad Automotive Simulation and Optimum Design Research Laboratory. Simulation Modelling Practice and Theory 84: 106–123. doi:10.1016/j. simpat.2018.01.009.
- [12]. Xiao, X., Y. Yin, J. Bao, L. Lu, and X. Feng. (2016), Review on the Friction and Wear of Brake Materials. Advances in Mechanical Engineering 8: 1–10. doi:10.1177/ 1687814016647300.
- [13]. Shravan H. Gawande and KonkalaBalashowry (2020), Study on Wear Analysis of Substitute Automotive Brake Pad Materials. Australian Journal of Mechanical Engineering October 2020. DOI: 10.1080/14484846.2020.1831133.
- [14]. Nicholson G. (1995), Facts about friction. Croydon, PA: P&W Price Enterprises, Inc.; 1995.
- [15]. Taiwo,O.O., Joseph, T.S., Adeyinka,A. and Gbenga J.A., (2019) Effect of Moulding Pressure on Lining produced from Industrial Waste Material European Journal of Engineering Research and Science Vol.4. No 6. June 2019.
- [16]. Amaren, S. G., Yawas, D.S. and Aku, S.Y. (2013) Effect of Periwinkle shell Particles size on wear behaviour of Asbestos free Brake pad. Results in Physics 3(2013), pg. 109-114.

http://dx.doi.org/10.1016/j.rinp.2013.06.004.

- [17]. Artemenko S. E., KadykovaY..A.,(2008), Polymer Composite Materials based on Carbon, Basalt, and Glass fibres; Fibre Chemistry, Vol. 40, No. 1, 2008
- [18]. Kim, S.J., Kim, K.S. and Jang, H. (2003), Determination of Best Manufacturing Parameters Using Taguchi Method. Journal of Materials Processing Technology 136(2003) pg.202-208.